Genomic and Mapping Resources for the Genetic Improvement of Shrub Willow Feedstock Crops

Michelle Serapiglia, Post-doctoral Associate Cornell University, Dept. of Horticulture New York State Agricultural Experiment Station Geneva, New York

http://willow.cals.cornell.edu/

Crop and forest biomass is a feedstock for biopower, liquid biofuels, and heat

Lyonsdale Biomass Power Plant, Lyons Falls, NY Photo: Catalyst Renewables

VeraSun Station, Brookings, SD

ACT Bioenergy Wood Boiler NYSAES, Geneva, NY

Breeding Objectives

Marginal Land Adaptability

Biomass Quality Traits

Rust Resistance

Photo by Shawn Kenaley

Potato Leaf Hopper Resistance

Intra- and Inter-specific Hybridizations

F₁

 F_1 and F_2

S. purpurea S. eriocephala S. miyabeana S. sachalinensis x S. miyabeana S. purpurea x S. integra

Multi-species hybrids

S. viminalis x (S. sachalinensis x S. miyabeana)

S. viminalis x (S. purpurea x S. miyabeana)

S. viminalis x (S. viminalis x S. miyabeana)

S. purpurea x (S. sachalinensis x S. miyabeana)

S. purpurea x (S. purpurea x S. miyabeana)

S. purpurea x (S. viminalis x S. miyabeana)

(S. sachalinensis x S. miyabeana) x S. purpurea

(S. sachalinensis x S. miyabeana) x S. miyabeana

(S. sachalinensis x S. miyabeana) x S. viminalis

(S. viminalis x S. schwerinii) x S. cinerea

(S. sachalinensis x S. miyabeana) x (S. purpurea x S. miyabeana)

(S. sach x S. miya) x (S. viminalis x (S. schwerinii x S. viminalis))

S. integra S. viminalis S. cordata S. nigra S. sachalinensis S. cordata x S. eriocephala S. purpurea x S. eriocephala S. purpurea x S. viminalis S. purpurea x S. sachalinensis S. purpurea x S. gilgiana S. koriyanagi x S. purpurea S. viminalis x S. miyabeana S. viminalis x S. eriocephala S. x dasyclados x S. miyabeana S. x dasyclados x S. eriocephala S. x dasyclados x S. viminalis S. eriocephala x S. purpurea S. matsudana x S. alba S. sachalinensis x S. eriocephala S. sericea x S. purpurea S. sericea x S. eriocephala S. sericea x S. sachalinensis S. discolor x S. cinerea S. discolor x S. eriocephala

Mean Yield of Top Five Genotypes in Yield Trials

• New cultivars contribute to 36% increase in yield of top five

Flow Cytometric Estimation of Nuclear DNA Content

Cultivar	Species	(pg/2C)
Diploid		
Björn	S. schwerinii x S. viminalis	0.76
Olof	S. viminalis x (S. schwerinii x S. viminalis)	0.80
Jorr	S. viminalis	0.83
P63	S. integra	0.93
94006	S. purpurea	0.94
SV1	S. x dasyclados	0.94
Triploid		
Nimrod	(S. schwerinii x S. viminalis) x S. udensis	1.15
Terra Nova	(S. triandra x S. viminalis) x S. udensis	1.11
Tully Champion	S. viminalis x S. miyabeana	1.31
Oneida	S. purpurea x S. miyabeana	1.33
01X-266-001	S. viminalis x (S. viminalis x S. miyabeana)	1.26
Tetraploid		
SX64	S. miyabeana	1.65
SX61	S. sachalinensis (S. udensis)	1.65
Canastota	S. sachalinensis x S. miyabeana	1.67
05X-284-001	S. purpurea x (S. purpurea x S. miyabeana)	1.87
Pentaploid?		
05X-286-001	S. miyabeana x (S. purpurea x S. miyabeana)	2.17

2008 Genetic Selection Trial - Geneva, NY

- 24-plant plots, 3 replicates, 76 genotypes
- Biomass harvested from middle 8 plants in Dec. 2011

NE Sun Grant - NEWBio Regional Trials

- Yield Trials (24 genotypes, 48 plant plots)
- Yield Trial Sites for 2013

Genomic Tools for Genetic Improvement

Association Mapping Population

- Candidate gene:trait association mapping
 - 114 S. purpurea natural accessions
 - 16 S. purpurea hybrids, S. koriyanagi, S. integra, and current hybrid cultivars

Trait mapping populations

Salix purpurea mapping population

S. purpurea 94006 x *S. viminalis* 'Jorr' [Willow beetle; potato leafhopper resistance]

S. koriyanagi 'SH3' x *S. purpurea* 94001 [Biomass chemical composition; Stem number]

S. purpurea 94006 x S. integra P63

[Stem diameter; Wood density & composition; Rust resistance]

Preliminary Genetic Map of S. purpurea

Steve DiFazio and Eli Rodgers-Melnick

Evidence for Divergence of Two Genera

- *Salix* > 300 species vs. *Populus* = 32 species
- Shrub vs. Tree Growth habit
- Multiple ploidy levels (2n=38)
- No terminal bud in Salix

Sequencing of the Salix purpurea L. genome

- Whole genome shotgun sequencing of clone ID 94006
 - diploid female (n = 19, ~485 Mb)
 - conducted at DOE JGI (PIs: Tuskan, Smart, Town)
- ALLPATHS genome assembly:
- 140X Illumina coverage:
 - Two lanes of 250bp PE
 - 4.5kb, 5.3kb, and 6.5Kb MP
- Total bases = 349 Mb (~85%)
- Max contig size = 784 kb
- Contig L50 = 46 kb
- Two 5X BAC libraries constructed

Transcriptome sequencing

- Salix purpurea transcriptome data to date:
 - 5 lanes Illumina 2x76 from 8 tissue libraries done at JGI
 - 84.6% of 201,926 transcripts aligned to genome assembly

Shoot tip 44.0 M reads

Leaves Day: 16.4 M Nite: 15.3 M Drought: 13.6

StemRootsNode:18 M reads51.7 M readsInternode:21.5 M

Catkins 46.1M reads

Genomic and Mapping Resources for the Genetic Improvement of Shrub Willow

Summary

- Excellent hybrid pedigrees have been produced and new hybrid combinations are being explored
- Trials have been planted on a wide range of sites to estimate regional yield potentials
- Many new high-yielding hybrids are triploid
- Candidate gene association mapping
- Developing a high-density genetic map using SNPs generated from GBS
- Draft sequence of the *S. purpurea* genome and transcriptome

J. Craig Venter Chris Town and Haibao Tang

Jerry Tuskan, Kerrie Barry, and Erika Lindquist

Ed Buckler, Sharon Mitchell, Katie Hyma, and Rob Elshire

Art Stipanovic and Tim Volk

Steve DiFazio and Eli Rodgers-Melnick

http://willow.cals.cornell.edu