Effects of Topographic Position and Fertilizer Rate on Early Growth of Hybrid Aspen Alleycropped with Winter Triticale

William L. Headlee¹, Richard B. Hall¹, Ronald S. Zalesny, Jr.²

¹ Iowa State University, Department of Natural Resource Ecology & Management, Ames IA, USA US Forest Service, Northern Research Station, Institute for Applied Ecosystem Studies, Rhinelander WI, U

Overview

- Purpose of study
- Experimental design
- Results
- Discussion

Purpose of Study

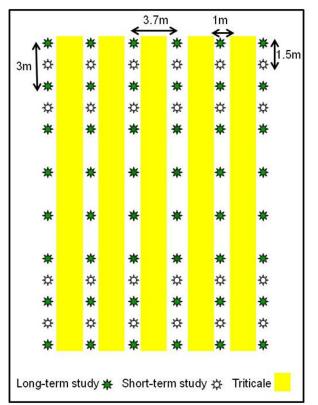
- Component of larger project comparing biomass productivity of annual and perennial cropping systems
 - Continuous corn
 - Corn/soybean rotation
 - Switchgrass
 - Sorghum/winter triticale double-crop
 - Hybrid aspen/winter triticale alleycrop
- Why winter triticale?
 - Provide early income for landowner
 - Growth cycle (mid-September to late-June) minimizes competition with the trees (peak growth July to August)
 - Weed control
- Why hybrid aspen?
 - Fast grower
 - Well-suited for marginal ag land

Study site near Ames, IA (est. 2009).

Triticale between aspen rows (July 2010).

Purpose (cont.)

- Five topographic positions
 - Summit
 - Shoulder slope
 - Back slope
 - Toe slope
 - Floodplain
- Four fertilizer rates (20-10-5 NPK tablets placed in planting hole)
 - 0 g tree⁻¹
 - 10 g tree⁻¹ (= 3.5 kg N ha⁻¹)
 - 20 g tree⁻¹ (= 7.0 kg N ha⁻¹)
 - 40 g tree⁻¹ (= 14 kg N ha⁻¹)
- Evaluated early tree growth (age 1-3)
 - Total aboveground dry biomass (branch + stem)
 - Allocation to branches (branch ÷ total)

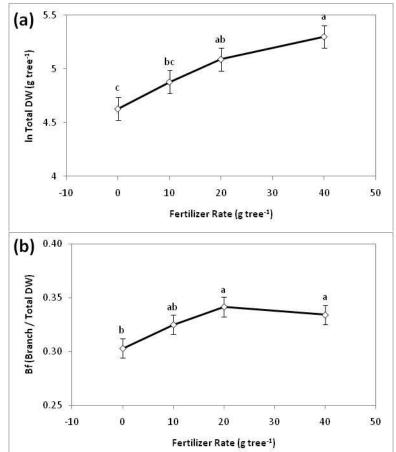

Aerial view of study site. (photo T. Schultz)

Ground view of back slope position. (photo T. Ontl)

Experimental Design

- Planting timeline and layout
 - Triticale planted in fall '08, strips 1 m wide killed with glyphosate in spring '09
 - Hybrid aspen 'Crandon' (*Populus alba* L. × *P. grandidenta* Michx.) planted into strip-killed rows in late spring '09
 - Long-term study trees planted at 3.0 × 3.7 m
 - Short-term study trees planted at 1.5 × 3.7 m; randomly assigned fertilizer rate and harvest age of 1-3 years
- Split-plot design
 - Main plot: 5 topographic positions × 3 reps = 15 plots
 - Split plot: 4 fertilizer rates × 3 ages × 2 trees = 24 trees plot⁻¹ (= 360 trees total)

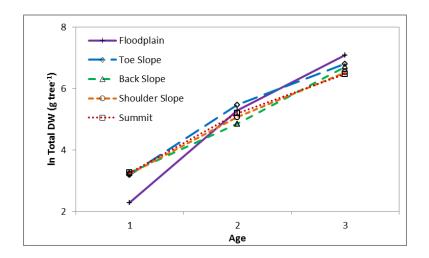
Plot layout as viewed from above.

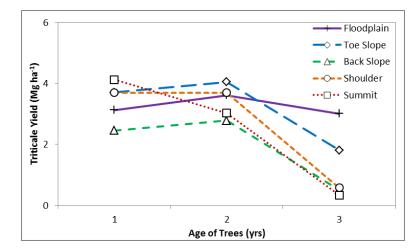

Results

 Analysis of variance results for total aboveground dry biomass (DW) and fraction allocated to branches (B_f)

Effects	DW	B _f
Block	0.0039	0.1515
Position	0.7228	0.3389
Age	<0.0001	<0.0001
Fertilizer	<0.0001	0.0111
Age × Fertilizer	0.2508	0.7583
Position × Age	0.0005	0.1445
Position × Fertilizer	0.7283	0.9933
Position × Age × Fertilizer	0.6687	0.9477

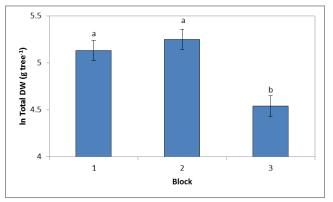
Results (cont.)

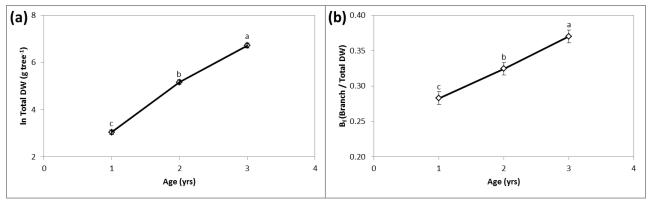

- Fertilizer significantly increased total aboveground biomass (a) and branch fraction of total biomass (b)
- Total aboveground biomass at end of study (age 3), by fertilizer rate:
 - 0 g tree⁻¹ = 1.55 Mg ha⁻¹
 - 10 g tree⁻¹ = 1.86 Mg ha⁻¹
 - $-20 \text{ g tree}^{-1} = 2.26 \text{ Mg ha}^{-1}$
 - 40 g tree⁻¹ = 2.79 Mg ha⁻¹



Effects of fertilizer rate on (a) total aboveground biomass and (b) branch fraction.

Results (cont.)


- Age × position interaction for total aboveground biomass
 - Floodplain < all others at age 1 (weed competition); not significantly different at ages 2 and 3
- Total aboveground biomass at age 3
 - Floodplain = 2.76 Mg ha⁻¹
 - Toe slope = 2.22 Mg ha⁻¹
 - Back slope = 1.78 Mg ha⁻¹
 - Shoulder = 1.45 Mg ha⁻¹
 - Summit = 1.46 Mg ha⁻¹
- Winter triticale yielded 2-4 Mg ha⁻¹ each of the first 2 years, but only the floodplain and toe slope had this level of productivity in year 3


Results (cont.)

- Block effect for total aboveground biomass
 - Blocks 1 and 2 significantly higher than Block 3 (deer damage)

Block effect for total aboveground biomass.

 Total aboveground biomass & branch fraction both increased with age

Increasing (a) total aboveground biomass and (b) branch fraction, with age.

Discussion

- Significant fertilizer effects suggest long term (i.e. rotation length) studies on low rates of well-placed fertilizer are needed
 - Cost/benefit analysis
 - Higher branch fraction
- Effects of topographic position not statistically significant at age 3
 - Trend toward higher tree productivity at lower-lying positions (floodplain and toe slope)
- Winter triticale productive (2-4 Mg ha⁻¹) for first 2 years for all positions; only productive in year 3 at lower-lying positions
- Significantly lower tree productivity in block 3 and floodplain (age 1) demonstrate importance of controlling deer and weeds!
- Questions?

Acknowledgements

- Support and funding for this study were provided by:
 - ArborGen, Inc.
 - ISU College of Agriculture and Life Sciences
 - Leopold Center for Sustainable Agriculture
 - USDA Agriculture and Food Research Initiative
 - US Forest Service Institute for Applied Ecosystem Studies
- Triticale data provided by Theo Gunther (MS Agronomy)