ARBORGEN Eucalypt Plantations in Florida USA: Economic Analysis of Current and Potential Uses

Dr. Jeff Wright

ArborGen Confidential

SARA

- Sustainable
- Affordable
- Reliable
- Available

• J. Lane, BioFuels Digest April 13, 2012

EU 27 Bio-energy Demand by 2020

- Renewable Energy Directive
 - 20% reduction in GHG from 1990 levels
 - 20% energy efficiency improvements
 - 20% energy from renewable sources
 - 10% increase in biofuels usage

• Source: Biorefining Magazine, February 2011.

Life Cycle Emissions Including Production

•	Fuel	CO2 emissions kg/GJ	CO2 emissions kg/MWh
•	Hard coal Oil	134 97	484 350
•	Natural gas	75	270
•	Wood chips @ 25% MC Wood pellets	7	25
•	@10% MC	9	33

• Source: Biomass Power & Thermal October 2011

UK Renewable Energy 2020 Targets

- 20% of energy needs from renewable sources
- 75% of renewables as wind, solar...
- 25% of renewables as biomass
- 50,000,000 dry tonnes biomass total
- 30,000,000 dry tonnes biomass imported
 - 22 million tonnes wood pellets
 - 24-36 wood pellet facilities (1/3 in US South?)
- 20,000,000 dry tonnes biomass-domestic
 - UK Forestry Commission says 2 million tonnes by 2020 in bio-energy forest plantations

Wood Bio-energy South Projected Annual Wood Demand 2022 www.forisk.com June 30, 2012

•	State	Projects	New Tons*	Current PW Tons*	Harvest Residues**
•					
•	AL	8	4,947,460	22,319,461	5,100,000
•	AR	7	1,820,000	8,599,960	
•	FL	18	10,574,125	8,810,364	4,700,00
•	GA	36	18,167,578	24,910,968	
•	LA	4	3,300,000	13,202,538	
•	MS	8	3,183,239	9,756,782	3,320,000
•	NC	13	2,796,000	6,516,913	3,617,000
•	SC	11	2,939,800	11,754,290	3,700,000
•	TN	6	3,150,000	N/A	
•	ТХ	9	2,862,440	8,828,168	
•	VA	15	2,207,300	N/A	
	Total	145	62,813,654	125,294,759	

*Green tons

• **Green tons estimated as available by state agency or USFS

Post Harvest Residue Gadsen Co. Florida

Whole Tree Chipped

Conventional Tree Length Harvest

Bio-energy Availability = Zero on Many Logged Sites

Bio-energy Resources (?)

Logging site waste

Urban waste


Florida Harvest and Utilization Study, 2008 Resource Bulletin SRS-162

- Average total harvest 68 tons/acre (15 ton/acre residual)
- 331,000 acres harvested (191,000 acres/year clearcut)
- Softwood 85% utilized 15% residual
 - Residual 3.2 million tons (1.0 million tons stem wood, 2.2 million tons tops and limbs)
- Hardwood 74% utilized 26% residual
 - Residual 1.5 million tons (0.7 million tons stem wood, 0.8 million tons tops and limbs)

Residual at 15 tons/acre, 50% recoverable is 7.5 tons/acre Need recoverable residuals from 80,000 acres clearcut for 50MW (600,000 tons/year)

Eastern US Hardwood Forest Plantation Opportunities

Conventional Eucalyptus

- •Uses: Mulch, Hardwood Pulp & Biomass for energy
- •Species: Eucalyptus benthamii
- •Sites: Lower latitudes in the SE USA
- •Soils: Somewhat poorly with good internal drainage to well drained soils
- •Silviculture: Good understanding but will improve
 - •Establishment cost > than pine
 - •Coppice for additional rotations < than pine
- •Risk: Freeze damage- Unknown pest
- •**Productivity range**: 9-16 Gtons/ac/yr pulp wood rotation 7-8 yrs. Specific gravity 0.46 to 0.52.
- •Improvement activities: Seed source testing, NCSU FPC screening

Eben – age 12 years

Eucalyptus benthamii (Eben)

- Most cold tolerant eucalyptus we have tested
- Current planting stock are seed collections from multiple sources which produce good but variable performance
- Large effort in US seed
 production

3-yr-old Eben planted near Jackson, AL

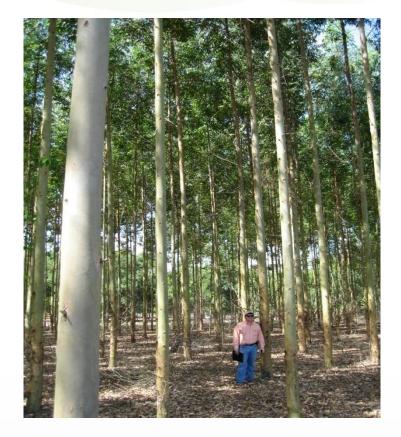
Eben seed production

Bellamy clonal orchard

Age one year – will be Seedling Seed Orchard

Native Eucalypts to Plantations

Species Introductions



E. benthamii South Carolina USA Age 6 years

Pawns to Clones

E. camalduensis, Age three years

ArborGen Confidential

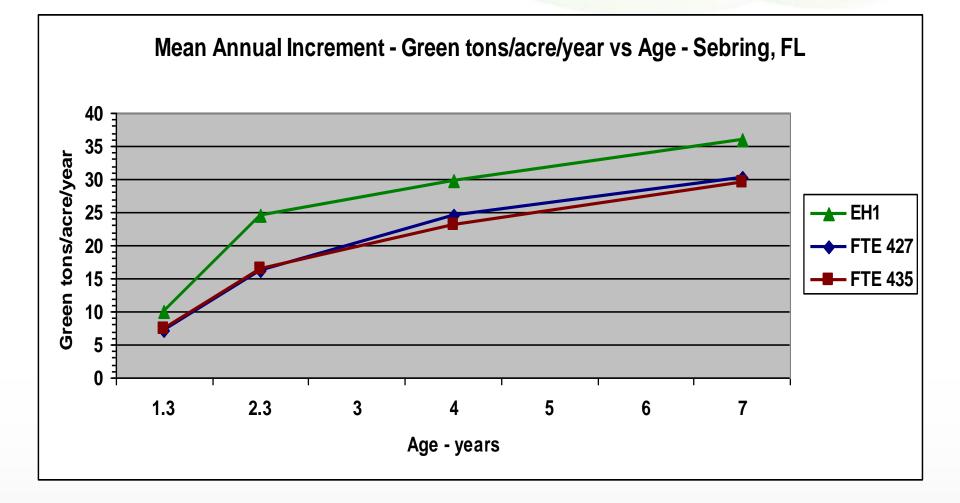
Selected Ecam, Age Two Years

EH1 South Florida

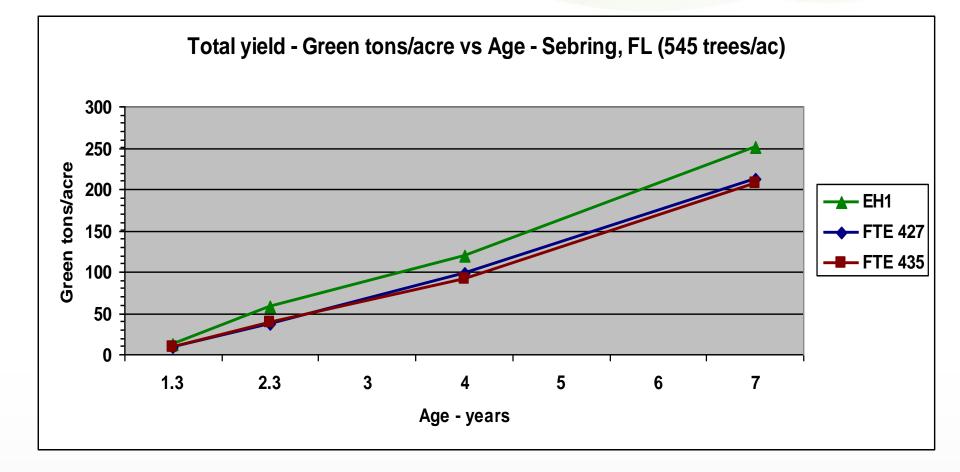
Age 12 months

Age 4 months

EH1 Sebring Florida.Age Four Years.



14 dry short tons/acre/year



Annual Yield Sebring FL

Total Yield Sebring FL

Eucalypt Coppice Management

Coppice 3 months

Coppice 18 months

E. urograndis at Age two years

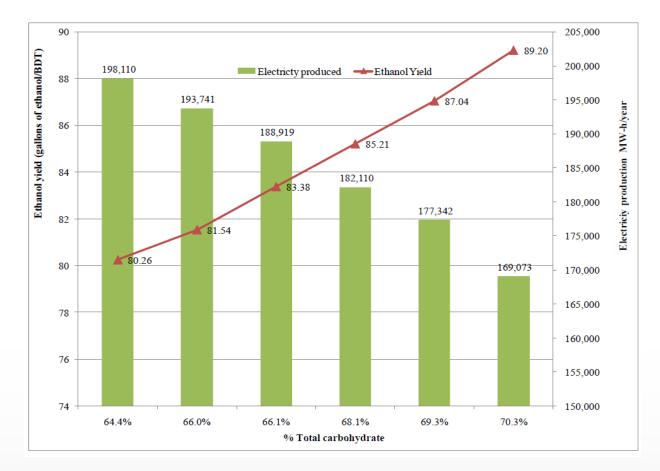
40' tall

4.5" DBH

ArborGen Confidential

Eucalypt for Mulch Production

Bio-energy Analysis



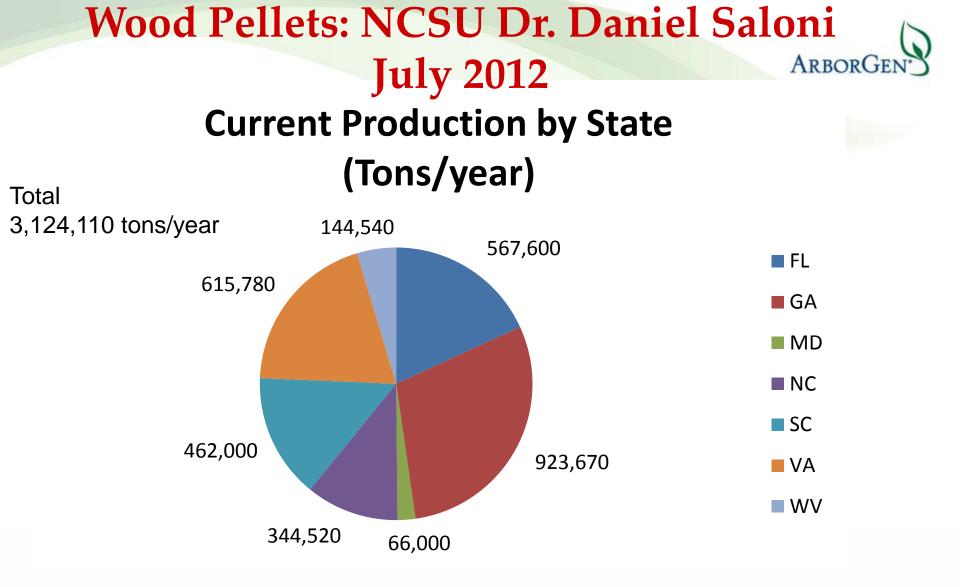
Field Crew – Brute Force

Lab Crew – Intelligent Force

Eucalypt potential for cellulosic ethanol

Gonzalez R, Treasure T, Jameel H, Saloni D, Phillips R, Abt R, and Wright J. Converting Eucalyptus Biomass Into Ethanol: Financial And Sensitivity Analysis In A Co-Current Dilute Acid Process. Part II. Biomass and Bioenergy 2010.

Eucalypts for solid bio-energy production ArborGE


Bio-energy such as wood pellets and briquettes can be effectively manufactured from Eucalyptus

PIRRAGLIA, ADRIAN; GONZALEZ, RONALDS; DENIG, JOSEPH; SALONI, DANIEL and WRIGHT, JEFF (2012).Assessment of the most adequate pre-treatments and woody biomass sources intended for direct co-firing in the US. BioResources 7(4)4817-4842.

PIRRAGLIA, ADRIAN; GONZALEZ, RONALDS; SALONI, DANIEL; WRIGHT, JEFF and DENIG, JOSEPH. (2011). Fuel properties and suitability of *Eucalyptus benthamii* and *Eucalyptus macarthurii* for torrefied wood and pellets. BioResources 7(1):217-235.

PIRRAGLIA, ADRIAN; GONZALEZ, RONALDS; SALONI, DANIEL and WRIGHT, JEFF. (2010). Wood pellets: An expanding market opportunity. Biomass Magazine 6:68-75.

Georgia is the largest producer with second fewest pellet plants

Wood Pellet Shipping Cost for the EU (1)

- SE US to EU US\$36
- Brasil to EU US\$44
- BC Canada to EU US\$67

• (1) Dr. Daniel Saloni, NCSU, Department of Biomaterials

Global Pellet Production and Demand (millions metric tonnes)

		Demand		Production	
		2010	2020	2010	2020
•	EU	10.8	23.8	7.7	13.0
•	China	0.6	10.0	0.6	10.0
•	Japan/Korea	0.2	5.5	0.1	1.1
•	North America	3.4	5.6	4.9	11.0
•	Total	15.0	44.9	13.3	35.1

• (Pellet Mill Magazine, Fall 2011)

Stem Size Matters

Eucalypt Bio-energy Harvest

Plantation age 18 months

Harvesting Systems – Whole Tree Biomass

Bales at roadside \$9.25/green ton

Whole tree chips at roadside \$10.42/green ton

D. Mitchell, USFS, October 2012

Eucalypt Harvesting Systems

Eucalypt Bio-energy Systems

Tree length chipping

Co-generation with bagasse

Range of Returns for Eucalypt Plantations (1)

•	Rotation	Origin	Cost/acre	Harvest	Stumpage	Prices
•		(\$)		Age	@ return rate	
•				(green tons/acre)	6%	10%
•	1 st	Seedling	s 525	89	9.02	11.44
•	2 nd	Coppice	215	102	3.42	4.24
•	3 rd	Coppice	215	88	3.86	4.80

 (1) Dougherty, Derek and Wright, Jeff (2010). Financial evaluation of eucalypt bio-energy plantations in the southeastern United States.
 Forest Landowners.

NC State University

Forest Biomaterials

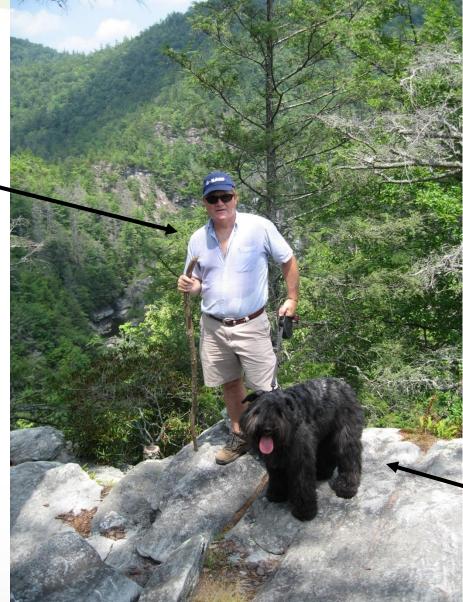
Effect of % cover area on freight distance & cost

HO HO OH

US South Delivered Wood Fuel Prices

- Wood fuel defined as by product of pulpwood chipping
- Price in Q4 2011 was \$20.32/delivered green ton (1)
- Plantation growing cost (stumpage)
- Cut, chip, haul cost

\$4-9/green ton \$10-16/green ton


Total
 \$14-25/delivered green ton

• (1) Source: Forest2Market February 2012

Questions?

Jeff Wright 843 991 2911

Coltrane