Harvesting Trials and Coppice Response of Three Hardwood SRWCs

Dana Mitchell and Wellington Cardoso USDA Forest Service, Southern Research Station Forest Operations Research Unit, Auburn, AL

Cooperators:

Tom Gallagher & Daniel de Souza, Auburn University School of Forestry and Wildlife Sciences

Overview

- Initial Coppice Felling
- Study Site
- Methodology
- Results & Discussion
- Conclusion

INTRODUCTION

Initial coppice felling

Why coppice?

- Coppice management system for biomass, not logs
- Stems re-sprout from stumps/stools
- Several harvests from one planting
 - Reduced planting and establishment costs between harvest rotations
- No site preparation required between harvest cycles
 - Reduced site impacts from equipment

SRWC 2014 Seattle, WA

Initial coppice felling moves stand from single stem management to coppice management

Equipment for Initial Coppice Felling

- Conventional harvesting equipment
- Specialized harvesting equipment

Willow Harvester, SUNY

Constraints

- Wet Site / Low Impact / Dormant Winter Operations
- Low cost alternative for low volume initial coppice felling
- Mechanized, no manual labor

Coppice Response Study

 Compare the effects of the felling method on coppice response

(shear vs. saw)

Shear head

SRWC 2014 Seattle, WA

Initial Coppice Felling

Shear Vs. Saw Study

 Determine if the ability to coppice is affected by the season of year in which the harvest is done (winter harvest vs. summer harvest)

STUDY SITES

Study Sites

MISSOURI Nashville

ARKANSAS

TENNESSEE

ARKANSAS

Arkansas River

Mississippi River Delta

SRWC 2014 Seattle, WA

Study Sites

Mississippi River Delta Site

- Cottonwood (Stand 1)
 - 4 years old
 - Planting Spacing = 5ft x 5ft
 - Average DBH = 3.0 in
 - Average Height = 23 ft
- Willow (Stand 2)
 - 4 years old
 - Planting Spacing = 5ft x 5ft
 - Average DBH = 1.50 in
 - Average Height = 19 ft

Study Sites

Arkansas River Site

- Cottonwood (Stand 3)
 - 4 years old (4 growing seasons)
 - Dual rows
 - Planting Spacing
 - Between row = 6 ft
 - Within row = 2 ft
 - Dual Trees = 2.5 ft
 - Average DBH = 1.4 in
 - Average Height = 29 ft

METHODOLOGY

Prime Mover

- Tracked skid steer
- Rubber tracks
- Ground pressure w/ shear attached = 4.86 lbs/in²
- Low cost alternative to larger machines
- Lower rate for Workman's Compensation – worker inside cab – compared to manual felling

Shear Head

- Low maintenance compared to saw heads
- Increased safety
 - no manual chain saw
 - no saw shot

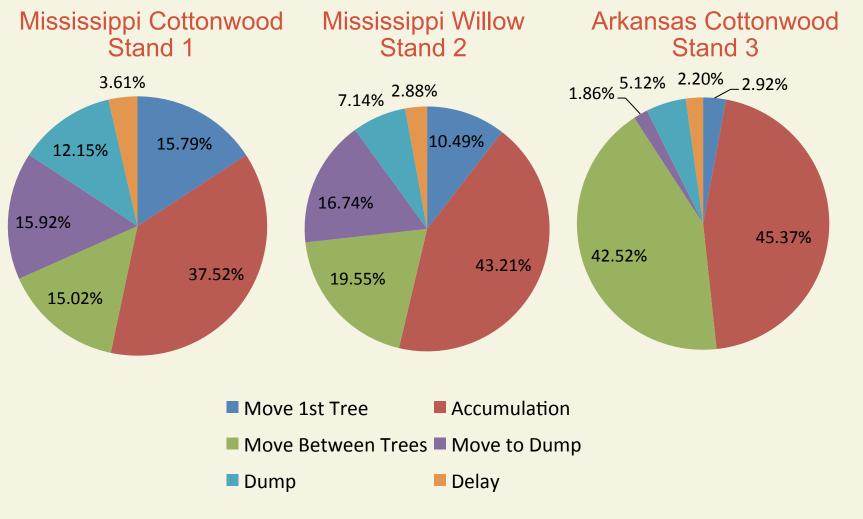
Fecon 14" Tree Shear

Operational Characteristics

- Felling single/dual row
- Bunching
- Dumping

Time Study / Production

- Digital video
- TimerPro
- Identified cycle elements
- Dormant season harvest (March 2014)



RESULTS AND DISCUSSION

Cycle Elements

- Move to first tree
- Fell/Accumulate
- Move between trees
- Move to dump
- Dump
- Delays

Stand Differences

- The number of trees felled per stand varied
 - Goal = 200 sheared trees/site
 - Mortality
 - Prior research removals

Mississippi Cottonwood – Stand 1

Production (Total time (min) / tree)

Sta	ınd	Total Time (min)	Total Trees	Total Time (min) / Tree
1	Mississippi Cottonwood	56.48	84	0.67 ^A
2	Mississippi Willow	64.28	104	0.62 ^A
3	Arkansas Cottonwood	65.09	188	0.35 ^B

Dual Row Vs Single Row

- Stand 2 (single row) and Stand 3 (dual row) have similar DBHs
- The overall average time to cut a tree was lower in the dual row (stand 3) than in the single row (stand 2)
- Willow branching patterns in Stand 2 negatively impacted cycle time
- Different number of trees per accumulation
 - 7 trees (Stand 2) Average
 - 23 trees (Stand 3) Average

Dual row felling - Stand 3

Machine Rate Assumptions				
Cost Item	CAT 279D			
Purchase Price	\$80,000 (USD)			
Machine Life	5 years			
Fuel Cost	\$3.13/gal			
Salvage Value	30%			
Utilization Rate (2000 SMH/Yr)	85%			
Horsepower	74 hp			
Shear Head (8500 PMH Life)	\$10,736			
Undercarriage (3000 PMH Life)	\$16,770			
Tracks (2500 PMH Life)	\$3,600			
Labor (w/fringe benefits)	\$19.50/SMH			

Machine Rate Assumptions				
Cost Item	CAT 279D			
Purchase Price	\$80,000 (USD)			
Machine Life	5 years			
Fuel Cost	\$3.13/gal			
Salvage Value	30%			
Utilization Rate (2000 SMH/Yr)	85%			
Horsepower	74 hp			
Shear Head (8500 PMH Life)	\$10,736			
Undercarriage (3000 PMH Life)	\$16,770			
Tracks (2500 PMH Life)	\$3,600			
Labor (w/fringe benefits)	\$19.50/SMH			

Production Rates

Stand	Time/Tree (minutes)	Time/Tree (hours)	\$/PMH	\$/Tree
1 MS Cottonwood	0.67	0.011167	\$56.90	0.64
2 MS Willow	0.62	0.010333	\$56.90	0.59
3 AR Cottonwood (dual row)	0.35	0.005833	\$56.90	0.33

Production Rates

Stand	Time/Tree (minutes)	Time/Tree (hours)	\$/PMH	\$/Tree
1 MS Cottonwood	0.67	0.011167	\$56.90	0.64
2 MS Willow	0.62	0.010333	\$56.90	0.59
3 AR Cottonwood (dual row)	0.35	0.005833	\$56.90	0.33

Alternative ways to display costs: \$/acre, \$/ton = fx (planting density, tree size)

Conclusion

Time and Motion Study

- 3 different stands
- Dual Row and Single Row
- All were 4 years old

Cycle Elements

- Impacted by the distant dumping location (Stand 1 and 2)
- Operational differences for dual row plantings
- Time per tree was lower in dual row stand than in single row stands

Production Influences

- Operator experience
- Presence of lower limbs

Acknowledgements

THANK YOU

Dana Mitchell and Wellington Cardoso USDA Forest Service, Southern Research Station Forest Operations Research Unit, Auburn, AL

http://www.srs.fs.usda.gov/forestops/